一区免费视频_亚洲精品成人av在线_久久99国产精品久久99果冻传媒_毛片网站多少

  為機床工具企業(yè)提供深度市場分析                     

用戶名:   密碼:         免費注冊  |   申請VIP  |  

English  |   German  |   Japanese  |   添加收藏  |  
鍛壓機床

車床 銑床 鉆床 數(shù)控系統(tǒng) 加工中心 鍛壓機床 刨插拉床 螺紋加工機床 齒輪加工機床
磨床 鏜床 刀具 功能部件 配件附件 檢驗測量 機床電器 特種加工 機器人

鍛壓機床

電工電力 工程機械 航空航天 汽車 模具
儀器儀表 通用機械 軌道交通 船舶

搜索
熱門關鍵字:

數(shù)控機床

 | 數(shù)控車床 | 數(shù)控系統(tǒng) | 滾齒機 | 數(shù)控銑床 | 銑刀 | 主軸 | 立式加工中心 | 機器人
您現(xiàn)在的位置:鍛壓機床網> 技術前沿>鍛壓工藝對高精度機床用鎂合金阻尼性能的影響
鍛壓工藝對高精度機床用鎂合金阻尼性能的影響
2018-7-4  來源:濰坊科技學院 機械工程學  作者:劉 鵬

       摘 要:采用不同的鍛壓工藝制備了高精度機床用 Mg-Al-Zn-Ti 鎂合金試樣,并進行了試樣的顯微組織和阻尼性能測試和分析。 結果表明:隨始鍛溫度或終鍛溫度或鍛壓比的提高,合金的阻尼性能均先提高后下降。 合金的始鍛溫度優(yōu)選為 480 ℃、終鍛溫度優(yōu)選為 370 ℃、鍛壓比優(yōu)選為 11。 在 0.8 Hz 測試頻率下,始鍛溫度為 480 ℃時合金阻尼性能較始鍛溫度為 420 ℃時提高了 124%。

       關鍵詞:鍛壓工藝;始鍛溫度;終鍛溫度;鍛壓比;阻尼性能

       密度低、可回收性佳和阻尼性能好的鎂合金,在高精度機床上具有極大的應用前景。采用鎂合金生產高精度機床零部件,有利于改善機床的減震性能,提高機床的精度和可靠性。但是在實際的生產過程中,鍛壓是高精度機床用鎂合金零部件的常用制備工藝,鍛壓工藝對鎂合金的顯微組織和綜合性能產生明顯影響.但是,關于鍛壓工藝對高精度機床用鎂合金的阻尼性能影響鮮有報道。為此,木文采用不同的鍛壓工藝制備高精度機床用鎂合金,并重點探討鍛壓工藝對高精度機床用鎂合金阻尼性能的影響,為鎂合金在高精度機床上的應用提供試驗數(shù)據(jù)。

       1、試驗材料與方法

       1.1 試驗材料

       以鎂錠、鋁錠、鋅粉、欽粉和Mg-5 Mn中間合金為原料.采用中頻感應熔煉后鐵模澆注的方法.制得高精度機床用鎂合金鑄錠。添加錳主要是用于除雜。鑄錠經400℃均勻化處理6h后,采用SPECTRO IQII型能量色散X射線熒光光譜儀進行化學成分分析,結果如表1所示。將均勻化的鎂合金錠加工成小100 mmx 150 mm毛坯,在J23-100型鍛壓機床上對均勻化后的鑄錠進行鍛壓成形,獲得高精度機床用鍛壓鎂合金試樣(以卜簡稱試樣)。其鍛壓工藝參數(shù)如表2所示。采用自制模具,模具由圓形模腔、壓頭、底座和模塊組成。
 
  
表1試樣的化學成分(質量分數(shù),%)
 
  
表2試樣的鍛壓工藝參數(shù)

       1.2 試驗方法

       試樣經線切割、金相制樣和腐蝕后,用PG18型金相顯微鏡觀察顯微組織,并結合Image Pro Plus軟件計算試樣的平均晶粒尺寸。試樣的阻尼性能采用葛式低頻扭擺儀進行測試,試樣尺寸為150mmxlmmxlmm.加熱爐升溫速率為1.5 0C /min ,測試溫度為25 ~ 275 0C、測試頻率為0.2 ~ 1.2 Hz,在升溫過程中測試試樣的阻尼性能,每次測量時間小于30s.

       2、試驗結果及討論

       2.1 始鍛溫度的影響

       在終鍛溫度370 0C,鍛比11和模具溫度355 0C時(試樣1 ~ 4 ),不同始鍛溫度對試樣晶粒尺寸的影響如圖1所示。從圖可以看出,始鍛溫度對高精度機床用鎂合金的平均晶粒尺寸產生明顯影響。隨始鍛溫度從420℃提高至500 0C,高精度機床用鎂合金的平均晶粒尺寸先減小后增大,合金晶粒先細化后粗化。其中當始鍛溫度為480℃時,高精度機床用鎂合金晶粒最細小,平均晶粒尺寸低至6.7 μm。
 
  
圖1 始鍛溫度對試樣晶粒尺寸的影響

       在終鍛溫度 370℃,鍛比 11 和模具溫度 355 ℃時不同始鍛溫度制備出的試樣(試樣 1~4)在相同頻率(0.6Hz)下阻尼性能隨溫度變化情況如圖 2 所示。 從圖可以看出,隨測試溫度增加,不同始鍛溫度制備的高精度機床用鎂合金阻尼系數(shù)逐漸增大,合金的阻尼性能均逐漸提高。但在相同測試溫度下,隨始鍛溫度提高, 高精度機床用鎂合金的阻尼系數(shù)先增大后減小,合金的阻尼性能先提高后下降。 在 25℃測試環(huán)境下, 始鍛溫度為 480℃時高精度機床用鎂合金的阻尼性能最佳,阻尼系數(shù)最大(67×10-3),較始鍛溫度為 420 ℃時提高了 63%, 較始鍛溫度為460 ℃時提高了 29%, 較始鍛溫度為 500 ℃時提高了 12%。 不同始鍛溫度制備出的試樣在相同測試溫度(225℃)下阻尼性能隨頻率的變化情況如圖 3 所示。 從圖可以看出,隨頻率增加,不同始鍛溫度制備的高精度機床用鎂合金阻尼系數(shù)逐漸減小, 合金阻尼性能均逐漸下降。 但在相同頻率下, 隨始鍛溫度提高,高精度機床用鎂合金的阻尼系數(shù)也表現(xiàn)出先增大后減小,合金的阻尼性能先提高后下降。 在 0.8Hz 測試頻率環(huán)境下, 始鍛溫度為 480℃時高精度機床用鎂合金的阻尼性能最佳,阻尼系數(shù)最大(130×10-3),較始鍛 溫 度 為 420 ℃時 提 高 了 124%, 較 始 鍛 溫 度 為460℃時提高了 67%,較始鍛溫度為 500 ℃時提高了23%。由此可以看出,從提高阻尼性能出發(fā),高精度機床用 Mg-Al-Zn-Ti 鎂合金的始鍛溫度優(yōu)選為 480℃。
 
  
圖2  0.6 Hz  下不同始鍛溫度試樣的阻尼性能
 
  
圖3 在225℃測試溫度下不同始鍛溫度試樣的阻尼性能

       2.2 終鍛溫度的影響

       在始鍛溫度 480℃,鍛比 11 和模具溫度 355 ℃時(試樣 5、6、3、7), 終鍛溫度對試樣晶粒尺寸的影響如圖4所示。從圖4可以看出,終鍛溫度對高精度機床用鎂合金的平均晶粒尺寸產生明顯影響。隨終鍛溫度從320℃提高至380 0C,高精度機床用鎂合金的平均晶粒尺寸先減小后增大,合金晶粒先細化后粗化。其中當終鍛溫度為370℃時,高精度機床用鎂合金晶粒最細小,平均晶粒尺寸低至6.7 μm。 
 
  
圖4 終鍛溫度對試樣晶粒尺寸的影響

       不同終鍛溫度制備出的試樣在相同頻率(0.6Hz) 下阻尼性能隨溫度變化情況如圖5所示。從圖可以看出,隨溫度增加,不同終鍛溫度制備的高精度機床用鎂合金阻尼系數(shù)逐漸增大,合金的阻尼性能均逐漸提高。但在相同溫度下,隨終鍛溫度提高,高精度機床用鎂合金的阻尼系數(shù)先增大后減小。在25℃測試環(huán)境下,終鍛溫度為370℃時高精度機床用鎂合金的阻尼性能最佳,阻尼系數(shù)最大(67x10-3);比終鍛溫度為320℃時提高了49%,比終鍛溫度為350℃時提高了31%,比終鍛溫度為380℃時提高了16%。不同終鍛溫度制備出的試樣在相同溫度(225 0C )卜阻尼性能隨頻率的變化情況如圖6所示。從圖可以看出,隨頻率增加,不同終鍛溫度制備的高精度機床用鎂合金阻尼系數(shù)逐漸減小.合金阻尼性能均逐漸下降。但在相同頻率下,隨終鍛溫度提高,高精度機床用鎂合金的阻尼系數(shù)也表現(xiàn)出先增大后減小,合金的阻尼性能先提高后下降。在0.8Hz測試頻率環(huán)境卜,終鍛溫度為370℃時高精度機床用鎂合金的阻尼性能最佳,阻尼系數(shù)最大(130x10-3 );較終鍛溫度為320℃時提高了210%,較終鍛溫度為350℃時提高了67%,較終鍛溫度為380℃時提高了38%。由此可以看出,從提高阻尼性能出發(fā),高精度機床用Mg-AI-Zn-Ti鎂合金的終鍛溫度優(yōu)選為370℃。

       2.3鍛比的影響

       在始鍛溫度480 0C,終鍛溫度370 0C(試樣8,3,9)時,不同鍛比制備出的試樣平均晶粒尺寸統(tǒng)計結果如圖7所示。從圖可以看出,鍛比對高精機床用鎂合金的平均晶粒尺寸產生明顯影響。隨鍛造比從7增大至15,高精度機床用鎂合金的平均晶粒尺寸先減小后基木不變。
 
  
圖5 在0.6 Hz相同頻率下不同終鍛溫度試樣的阻尼系數(shù)
 
  
圖6 在225℃相同溫度下不同終鍛溫度試樣的阻尼系數(shù)
 
  
圖7鍛造比對試樣晶粒尺寸的影響

       不同鍛比制備出的試樣在相同頻率(0.6 Hz ) 下阻尼性能隨溫度變化情況如圖8所示。從圖8可以看出,隨溫度增加,不同鍛比制備的高精度機床用鎂合金阻尼系數(shù)均逐漸增大,合金的阻尼性能均逐漸提高。但在相同測試溫度下,隨鍛比提高,高精度機床用鎂合金的阻尼系數(shù)先增大后減小,合金的阻尼性能先提高后下降。在275℃測試環(huán)境下,鍛比為11時高精度機床用鎂合金的阻尼性能最佳,阻尼系數(shù)最(165x10-3);較鍛比為7時提高了54%,較鍛比為15時提高了29%。不同鍛比制備出的試樣在相同測試溫度(225 0C )卜阻尼性能隨頻率的變化情況如圖9所示。從圖可以看出,隨頻率增加,不同鍛比制備的高精度機床用鎂合金阻尼系數(shù)逐漸減小,合金阻尼性能均逐漸卜降。但在相同頻率下,隨鍛比提高,高精度機床用鎂合金的阻尼系數(shù)也表現(xiàn)出先增大后減小,合金的阻尼性能先提高后下降。在0.8Hz測試頻率環(huán)境下,鍛比為11時高精度機床用鎂合金的阻尼性能最佳,阻尼系數(shù)最大(130x10-3),較鍛造比為7時提高了282%,較鍛比為15時提高了136%。由此可以看出,從提高阻尼性能出發(fā),高精度機床用Mg-AI-Zn-Ti鎂合金的鍛比優(yōu)選為11。
 
圖8在0.6 HZ下不同鍛比試樣的阻尼系數(shù) 
 
 
  
圖9 在225℃測試溫度下不同鍛造比試樣的阻尼系數(shù)

       3、 結論

       (1)隨始鍛溫度從420℃提高至500 0C,高精度機床用Mg-A1-Zn-Ti鎂合金的平均晶粒尺寸先減小后增大;在相同測試溫度或者相同頻率下,合金的阻尼性能均隨始鍛溫度增加而先提高后下降。在25 0C測試環(huán)境下,始鍛溫度為480℃時合金阻尼性能分別較始鍛溫度為420,460,500℃時提高了63% ,29% ,12%。在0.8Hz測試頻率環(huán)境下,始鍛溫度為480℃時合金阻尼性能分別較始鍛溫度為420,460,500時提高了124% , 67% ,23%。

       (2)隨終鍛溫度從320℃提高至380 0C,高精度機床用Mg-A1-Zn-Ti鎂合金的平均晶粒尺寸先減小后增大;在相同溫度或者相同頻率下,合金的阻尼性能均隨終鍛溫度增加表現(xiàn)出先提高后下降。在25℃測試環(huán)境下,終鍛溫度為370℃時阻尼性能分別較終鍛溫度為320 ,350 ,380℃時提高了49%,31%,16%。在0.8 HZ測試頻率環(huán)境下,終鍛溫度為3700C時阻尼性能分別較終鍛溫度為320,350,380℃時提高了210%,67%,38%。
       
       (3)隨鍛比從7增大至15,高精度機床用Mg-A1-Zn-Ti鎂合金的平均晶粒尺寸先減小后基木不變;在相同測試溫度或相同頻率下,合金的阻尼性能均隨鍛比增加而先提高后下降。在275℃測試環(huán)境下,鍛比為11時合金的阻尼性能分別較鍛比為7,15時提高了54% ,29%。在0.8Hz測試頻率環(huán)境下,鍛比為11時合金的阻尼性能分別較鍛比為7,15時提高了282%,136%。

       (4)從提高高精度機床用Mg-AI-Zn-Ti鎂合金的阻尼性能出發(fā),合金的始鍛溫度優(yōu)選為480 0C,終鍛溫度優(yōu)選為370 ℃,鍛比優(yōu)選為11。
    投稿箱:
        如果您有機床行業(yè)、企業(yè)相關新聞稿件發(fā)表,或進行資訊合作,歡迎聯(lián)系本網編輯部, 郵箱:skjcsc@vip.sina.com